

Signaling No.7 Scenario Constructing, Analysis,
Log-booking and Execution Suit

Version 0.3.1

Creating Message Templates and
Operations Definitions

Sofia, 2013

This document and the information contained in it may not be published, distributed or reproduced without written permission of the author.
Its purpose is to help readers to explore and acquire the 7-Scales project without any warranty regarding discrepancies with the other
documents and the source code it refers to.

2/13

Table of Content

1 Definitions.. 4

2 Creating operations definitions... 6

2.1 Creating long context... 6

2.2 Creating optimized context.. 7

3 Creating message templates ... 9

3/13

Document history

Date Authors Doc
Rev.

SW
Rel.

Subject/Reason for change Status

2012-11 Ivelin Atanasov 1 0.2.2 Initial version Complete

2013-03 Ivelin Atanasov 2 0.3.1 New SW release Complete

4/13

1 Definitions
The 7-Scales project defines the following notions, related to messages, operations and information elements:

Message structure – a C-language structure that models an SS7 message that implements TCAP protocol. At MTP3
Level this is MSU (message signal unit); at SCCP level this is UDT or XUDT message. TCAP message contains
operations of an Application Part like MAP, INAP, CAP.

Long context is a structure that models an Operation. It is implemented as a 2-dimentional array, each row of which
is related to an I.E. that is present in the Operation and consists of consecutive Tags of the I.E.s that embrace it. The
idea behind the Long context is very simple: you can get to any I.E. in a TCAP message by starting from the tag of
the component (i.e. Invoke) and going down along the path of the tags of the consecutive I.E.s that embrace it until
you step on the same tag as one of the I.E. that is your target. Here is an example:

For the input file input_msu.txt (MAP operation ProvideRoamingNumber1):

the Long context is:

Each of the numbers there is a tag of an Operation. Each row gives a path from the Invoke tag (A1) to the I.E. the
row refers to. Reference is very simple: 1st row corresponds to Invoke tag, 2nd – to the next I.E., InvokeID (02), etc.

For the time being the 7-Scales is capable to model Operations that have up to 16 levels of inclusion. This capability
is controlled by a named constant, MAX_DEPTH, located in tcapbase.h .

Compare the above table with the log produced by the tool dmtcap.exe on the same message (the first
decomposition is the Dialogue portion):

1 Network sensitive information is replaced by ‘XX ’ or ‘nn’

5/13

Note that most I.E.s are unique, but some may have multiple presence in an Operation. To access them there is
another mechanism that is available at runtime.

Optimized context is another structure that models an Operation. As with the Long context, it is implemented as a
2-dimential array, each raw of which is related to an I.E. present in the Operation. It is possible to convert Long
context in Optimized and vice versa. The idea behind the Optimized context is even simpler – it contains the same
information in more efficient way both in terms of space and processing time. It is called sometimes “Short
context”. Here is the optimized context that corresponds to the long one (it is produced by Gentco.exe):

As can be seen from the printout, it is called also Static thisIE structure of the Operation.

6/13

The term Optimized context is applied also to the Dynamic thisIE structure an example of which is presented on the
following figure (produced by dmtcap.exe on the same message):

Static thisIE structure is a structure of type Optimized context that is used to model the complete structure of an
Operation.

Dynamic thisIE structure is also a structure of type Optimized context that is used to model an Operation at runtime.

Both structures match exactly each other in 2nd, 3rd and 4th columns – DEPTH=Dt, OWNER=Up and RIGHT=Rt . OWNER
specifies which is the owner of this I.E., addressing the row of the table, at which the data related to the owner I.E.
are located. DEPTH counts how many owners there are on the path up to the root. RIGHT addresses the next I.E. that
is of the same level of depth and has the same owner as this I.E.

Considering that this I.E. is the 5th I.E. (the one [Th]=97 and [TAG]=000081), the [OWNER]=[Up]=3 as the 3rd I.E.
directly encompasses this I.E., and [RIGHT]=[Rt]=9 as the 9th I.E. is of the same level of depth and has the same
owner as this I.E.

Static and dynamic thisIEs differ in the following. Static thisIE contains Tags while dynamic thisIE contain an
index to the same Tag in the message; static thisIE contains holders for the Universal names of I.E.s (UNAME) and for
indexes to functions that provide further treatment of these I.E.s (SPARE), while dynamic thisIE contain holders for
the length of the Length of I.E.s (Ll), length of the Value of I.E.s (Lv), return code from processing exactly this I.E
(Rc) and other details (Dt).

2 Creating operations definitions
Operations definitions are exactly static thisIE structures for the operations. This is a 2-step procedure – at first we
produce the long context and then from the long context we produce the optimized context. On the first step we use
Gentcl.exe , on the second step we use Gentco.exe .

2.1 Creating long context
Gentcl.exe is used as follows:

Gentcl –i <input_file.txt> -o <output_file.txt>

The input file has to be of the following shape:

7/13

The first line is considered to be comment with or without the ‘//’. The comment will be copied in the output file.

The following three lines are clear in their meaning. The index and the table are taken from the header file
cs1pbase.h for CS1P and from map_base.h for MAP. The length is not a predefined name, but goes well with the
others. The last line is the operation itself starting from the Invoke I.E. (Tag A1). It should finish with Enter and
nothing on the next line.

The output is:

Here you can add the names of the I.E.s taken from the cs1popdefs.h for CS1P and map_opdefs.h for MAP.

You can add more rows either manually or from other outputs for the same operation. At this moment you are ready
to supply the input for the Gentco.exe to produce the final result.

2.2 Creating optimized context
Gentco.exe is used as follows:

Gentco –i <input_file.txt> -o <output_file.txt>

In the course of the InitialDP example the result will be as follows:

8/13

Note that the index is used only in the comment in the end of the file. You have to copy the named constants that go
in the comments onto the column UNAME. Then you place the array tab_opInitialDP_v0 and the XArray object
xtab_opInitialDP_v0 in the header cs1popdefs.h . Finally, you replace the dummy row in the array tab_opCS1P
2at position idx_opInitialDP_v0 with the following:

{{len_opInitialDP_v0, (int*) tab_opInitialDP_v0}, { 0, NULL}},

Make sure that all named constants for the I.E.s are defined in the header cs1popdefs.h and compile.

2 Arrays tab_opCS1P and tab_opMAP are removed from cs1popdefs.h and map_opdefs.h since version v0-2-2.

9/13

3 Creating message templates
Message templates are created by the software tool dmtcap2 for v0.3.1 onward. It is used as follows:

dmtcap2 –a <SS7_ID> –c <Application_context>

Here SS7_ID is taken from the header tcapbase.h: UAP_ID, MAP1ID, MAP2ID, MAP3ID, CAP1ID, CAP2ID,

CAP3ID, CAP4ID, INCS1ID, INCS2ID, INCS3ID , and INCS1PID . Application_context is taken from map_base.h ,
cap_base.h and cs1pbase.h :

MAP CAP CS1P

acNetworkLocUp_v1 acCAP_gsmSSF_scfGeneric_v3 acCs1p lus_ssp_to_scp_v0

acNetworkLocUp_v2 acCAP_gsmSSF_scfGeneric_v4 acCs1p lus_assist_hoff_ssp_to_scp
_v0

acNetworkLocUp_v3 acCAP_gsmSSF_scfAssistHandoff_v
3

acCs1plus_ip_to_scp_v0

acLocationCancel_v1 acCAP_gsmSSF_scfAssistHandoff_v
4

acCs1plus_scp_to_ssp_v0

acLocationCancel_v2 acCAP_scf_gsmSSFGeneric_v3 acCs 1plus_scp_to_ssp_traffic_mng
t_v0

acLocationCancel_v3 acCAP_scf_gsmSSFGeneric_v4 acCs 1plus_scp_to_ssp_service_mng
t_v0

acRoamingNbEnquiry_v1 ac_gsmSRF_gsmSCF_v3 acCs1plus _ssp_to_scp_service_mng
t_v0

acRoamingNbEnquiry_v2 ac_gsmSRF_gsmSCF_v4 acCs1plus _data_mngt_v0

acRoamingNbEnquiry_v3 acCAP_gsmSSF_gsmSCF_v1 acCs1p lus_scp_to_ssp_traffic_lim
it_v0

acIstAlerting_v3 acCAP_gsmSSF_gsmSCF_v2

acLocInfoRetrieval_v1 acCAP_gprsSSF_gsmSCF_v3

acLocInfoRetrieval_v2 acCAP_gprsSSF_gsmSCF_v4

acLocInfoRetrieval_v3 acCAP_assist_gsmSSF_gsnSCF_v2

acCallControlTransfer_v3 acCAP_gsmSCF_gprsSSF_v3

acCallControlTransfer_v4 acCAP_gsmSCF_gprsSSF_v4

acReporting_v3 acCAP_gsmSRF_gsmSCF_v2

acCallCompletion_v3 ac_cap_sms_v3

acServiceTermination_v3 ac_cap_sms_v4

acReset_v1

acReset_v2

acHandoverControl_v1

acHandoverControl_v2

acHandoverControl_v3

acEquipmentMngt_v1

acEquipmentMngt_v2

acEquipmentMngt_v3

acInfoRetrieval_v1

10/13

acInfoRetrieval_v2

acInfoRetrieval_v3

acInterVlrInfoRetrieval_v2

acInterVlrInfoRetrieval_v3

acSubscriberDataMngt_v1

acSubscriberDataMngt_v2

acSubscriberDataMngt_v3

acTracing_v1

acTracing_v2

acTracing_v3

acNetworkFunctionalSs_v1

acNetworkFunctionalSs_v2

acNetworkUnstructuredSs_v2

acShortMsgGateway_v1

acShortMsgGateway_v2

acShortMsgGateway_v3

acShortMsg_Relay_v1

acShortMsgMO_Relay_v2

acShortMsgMO_Relay_v3

acSubscriberDataModifNotif_v
3

acShortMsgAlert_v1

acShortMsgAlert_v2

acMwdMngt_v1

acMwdMngt_v2

acMwdMngt_v3

acShortMsgMT_Relay_v2

acShortMsgMT_Relay_v3

acImsiRetrieval_v2

acMsPurging_v2

acMsPurging_v3

acSubscriberInfoEnquiry_v3

acAnyTimeInfoEnquiry_v3

acGroupCallControl_v3

acGprsLocationUpdate_v3

acGprsLocationInfoRetrieval_
v3

acGprsLocationInfoRetrieval_
v4

acFailureReport_v3

acGprsNotify_v3

11/13

acSs_InvocationNotification_
v3

acLocationSvcGateway_v3

acLocationSvcEnquiry_v3

acAuthenticationFailureRepor
t_v3

acShortMsgMT_RelayVGCS_v3

acMm_EventReporting_v3

acAnyTimeInfoHandling_v3

acResourceManagement_v3

acGroupCallInfoRetrieval_v3

The input file has a fixed name, input_msu.txt . It should start at the MTP3 level (for national messages this is
0x83) and should consist of only one line, finishing with Enter. Here is an example with the InitialDP operation:

The resulting file is named as follows: dmtcap_XXXXXXXXXX.log . The content of this file for the InitialDP example
is presented on the following figure.

Note that in the example below some of the octets are replaced by “nn” to hide network data that is not published
usually.

12/13

13/13

This output needs some manual modification to be ready for a message template. The modification consists of
writing names of the named constants that are used here: MSG_LEN, RAW_MSG, DLOG_LEN, DLOG_TAB, CM0_LEN,

CM0_TAB, …, CM7_LEN, CM7_TAB , and MSU_STRU. The following rules are applied so far:

- For the header file – cs1pvV_acM_opNN.h , where V=version, M=Application Context, NN=consecutive
number of the header file, starting from 01

- For MSG_LEN - CS1PACx_OPnnOBmm_LEN, where x=Application Context, nn=consecutive number of the
Operations Package (the number of the header file, nn=NN), mm=consecutive number of the Operations
Bundle (a set of Operations put in a message)

- For RAW_MSG - CS1PACx_OPnnOBmm_MSU, where x=Application Context, nn=consecutive number of the
Operations Package (the number of the header file, nn=NN), mm=consecutive number of the Operations
Bundle (a set of Operations put in a message)

- DLOG_TAB is a named constant that contains NULL and has to be replaced if the message carries a Dialogue
Portion. For the example it has the form of CS1PDLOG_ACxRQ_TAB, where n=Application Context.

- For CM0_TAB the name is CS1PACx_OPnnOBmmYYY_TAB, where x= Application Context, nn= Operations
Package, mm= Operations Bundle and YYY is the short name of the Operation that is modeled by this
structure (IDP in this case).

- Etc.

Note that an Operation can be used in many Application Contexts. It may be needed to change the Application
Context of the template message that conveys the Operation at runtime.

